6.12. ZAGADNIENIA KONTAKTU CIAŁ ODKSZTAŁCALNYCH

6.12.1. Wprowadzenie

Zagadnienia kontaktu są silnie nieliniowe i zwykle wymagają znacznych nakładów obliczeniowych. Z tego względu ważne jest właściwe zrozumienie fizycznej strony zadania by zbudować efektywny model numeryczny. Zadania kontaktu wiążą się z dwoma podstawowymi trudnościami:

- strefa kontaktu nie jest dokładnie znana i zależy m.in. od takich czynników, jak obciążenie, własności materiałowe, warunki brzegowe; kontaktujące się powierzchnie ciał mogą wchodzić w kontakt i tracić go w sposób trudny do przewidzenia.
- tarcie jest dodatkowym czynnikiem wprowadzającym nieliniowość i może czasem powodować trudności ze zbieżnością procesu iteracyjnego.

Istnieją zasadniczo dwie klasy zagadnień kontaktu: kontakt między ciałem sztywnym a sprężystym (*rigid-to-flexible*) i kontakt między ciałami sprężystymi (*flexible-to-flexible*). W przypadku zadań, w których istnieje duża dysproporcja miedzy sztywnością kontaktujących się ciał, wskazane jest użycie kontaktu typu *rigid-to-flexible*. Przykładem takich zadań są zadania obróbki plastycznej metali. Druga klasa zagadnień, *flexible-to-flexible*, występuje w przypadku kontaktu ciał o zbliżonej wartości modułu Younga. Należy wtedy uwzględnić podatność wszystkich będących w kontakcie ciał.

Dostępnych jest pięć modeli kontaktu: kontakt typu węzeł-węzeł (*node-to-node*), typu węzełpowierzchnia (*node-to-surface*), typu powierzchnia-powierzchnia (*surface-to-surface*), typu linia-linia (*line-to-line*) i linia-powierzchnia (*line-to-surface*). Każdy typ kontaktu używa innego zestawu elementów kontaktu

W zadaniu kontaktu ważne jest zdefiniowanie strefy potencjalnego kontaktu reprezentowanego przez węzły brzegowe lub elementy związane z powierzchnią brzegową. Model obliczeniowy rozpoznaje możliwe pary kontaktowe przez specjalne elementy, które zostają zbudowane w tej strefie.

6.12.1.1. Idea tworzenia elementów strefy kontaktu

Idea tworzenia elementów strefy kontaktu została przedstawiona poglądowo na przykładzie dwuwymiarowego kontaktu typu węzeł-segment (node-to-segment).

Dalej przedstawiono sytuację kontaktu dwóch ciał: A jest ciałem wchodzącym w kontakt, B – celem kontaktu (rys. 6.12.1). Decyzja, które ciało ma być obrane ciałem A, a które ciałem B jest arbitralna, zależy od typu zadania i niesie ze sobą konsekwencje, które będą omówione później.

Rys. 6.12.1. Schemat kontaktu dwóch ciał

Sposób wchodzenia w kontakt i powstanie nowego elementu przedstawia rys. 6.12.2.

Rys.6.12.2. Fazy wchodzenia w kontakt: a) faza zbliżania, b) wejście w kontakt, c) element kontaktu.

Procedura śledzenia warunków kontaktu (rys. 6.12.2):

- 1. Niech ciało A, wchodzące w kontakt, ma na swym brzegu $\partial \Omega_c^A$ wyodrębnione węzły mogące potencjalnie wejść w kontakt z ciałem B; węzły te oznaczone zostały jako:...,i-1, i, i+1,...
- 2. Niech ciało B, będące celem kontaktu, ma na brzegu $\partial \Omega_c^B$ segmenty (boki elementów) mogące potencjalnie zetknąć się z węzłami brzegowymi ciała A:..., j-1, j, j+1,...
- 3. W każdej chwili czasu, każdy segment ciała B śledzi wybrane najbliższe węzły mogące wejść w kontakt.
- 4. W chwili gdy jeden z węzłów I_0 znajdzie się blisko segmentu j (o węzłach J i K), zostaje sprawdzona jego współrzędna względem lokalnego układu (x, z) segmentu.
- 5. Jeśli węzeł trafi w segment ($z_{I_0} \le 0$), wtedy węzeł I_0 zostaje związany z segmentem elementami sprężystymi w punkcie trafienia D. Sprężysty element kontaktu ma sztywność normalną k_z na tyle dużą, by praktycznie uniemożliwić penetrację. Sztywność styczna k_x jest uzależniona od nacisków i współczynnika tarcia.
- 6. Założony zostaje nowy element: I, J, K, dla którego k_x, k_z są odpowiednimi sztywnościami tych elementów sprężystych.
- 7. Przemieszczenie węzła I może odbywać się teraz stycznie do linii segmentu: JK.

Związek pomiędzy siłami w "sprężynkach" elementu a przemieszczeniami w układzie lokalnym możemy zapisać jako:

$$\begin{cases} F_x \\ F_z \end{cases} = k \begin{cases} u_x \\ z_I \end{cases} \quad \text{dla} \quad z_I \le 0, \quad |F_x| \le \mu \cdot |F_z|$$

$$(6.12.1)$$

gdzie: k – jest stałą sprężystą,

- u_x jest przemieszczeniem punktu I względem punktu trafienia D,
- z_I jest współrzędną punktu I w układzie lokalnym segmentu,
- μ jest współczynnikiem tarcia.

Możliwe są następujące przypadki kontaktu:

- przyleganie (brak poślizgu),
- poślizg z tarciem; punkt D zmienia swoje położenie z D na D₁ (poślizg).

Idea kontaktu typu surface-to-surface przedstawia się nieco inaczej. Na brzegu ciała będącego celem kontaktu umieszczane są elementy kontaktowe CONTA, a na brzegu ciała, które ma być celem – osobne elementy celu TARGE (w przypadku stosowania sztywnego celu (rigid target) można wygenerować bezpośrednio element TARGE o wybranym kształcie). Oddziaływanie pomiędzy elementami CONTA i TARGE jest potencjalnie możliwe, gdy posiadają one ten sam numer stałej typu real. Do kontaktu dochodzi, gdy nastąpi penetracja powierzchni kontaktu przez powierzchnię celu, co jest śledzone w punktach detekcji kontaktu, którymi są punkty całkowania związane z węzłami lub punktami Gaussa (rys. 6.12.3). Element kontaktu jest powstrzymany więzami tak by nie penetrował przez powierzchnię celu w tych punktach detekcji. Jednak powierzchnia celu może penetrować przez powierzchnię kontaktu. Używanie punktów Gaussa jako punktów detekcji daje z reguły lepsze wyniki niż śledzenie węzłów kontaktu. Głębokość penetracji jest mierzona w kierunku normalnym od powierzchni kontaktu w punktach detekcji do powierzchni celu.

Rys.6.12.3. Schemat kontaktu typu surface-to-surface

Położenie i ruch elementu CONTA względem związanego z nim elementu TARGE wyznacza status kontaktu elementu. Program monitoruje każdy z elementów kontaktu i przypisuje mu jeden ze statusów:

- STAT = 0 otwarty odległy (element celu znajduje się poza sferą wokół punktu całkowania elementu kontaktu pinball region)
- STAT = 1 otwarty bliski (element celu znajduje się wewnątrz sfery wokół punktu całkowania elementu kontaktu pinball region)
- STAT = 2 kontakt z poślizgiem
- STAT = 3 kontakt z przyleganiem

Najwięcej operacji numerycznych dotyczy elementów w kontakcie. Ustawienie właściwego promienia sfery poszukiwań (pinball region) pozwala uniknąć błędów kontaktu gdy powierzchnia celu posiada wypukłe obszary. Wartości domyślne ustawień kontaktu z reguły wystarczają do poprawnej analizy.

Elementy kontaktu mogę oddziaływać nie tylko normalnie do powierzchni kontaktu, ale i stycznie. W klasycznym ujęciu tarcia wg modelu Coulomb'a powierzchnie kontaktujące mogą oddziaływać na siebie przez naprężenia styczne. Dostępne są inne modele tarcia, możliwe jest też odklejanie kontaktu w celu zamodelowania efektu delaminacji.

Możliwe są cztery algorytmy kontaktu (wybierane przez KEYOPT(2)) oparte na metodzie funkcji kary bądź metodzie mnożników Lagrange'a (czystej lub poprawionej).

6.12.1.2. Przebieg analizy przy użyciu elementów typu surface-to-surface

Budowę elementów strefy kontaktu wygodnie jest przeprowadzić za pomocy specjalnego narzędzia zwanego *Contact Wizard*, które jest dostępne w preprocesorze (*Preprocessor> Modeling> Create> Contact Pair>Contact Wizard*) lub spod przycisku Contact Manager po prawej stronie linii wprowadzania komend panelu *GUI* (rys. 6.12.4). To narzędzie ułatwia tworzenie elementów kontaktu dla większości zagadnień kontaktu. Narzędzie *Contact Wizard* przeprowadza użytkownika w ułatwiony sposób przez proces tworzenia elementów w strefie kontaktu, automatycznie dobierając potrzebne parametry takie, jak sztywności kontaktowe (normalna i styczna), dopuszczalny zakres penetracji, itd.

Rys. 6.12.4. Rolka ściskana dwoma okładzinami

Podstawowymi krokami budowy i analizy modelu są:

- 1) utworzenie modelu geometrycznego obiektu i siatki elementów skończonych,
- 2) określenie strefy kontaktu,
- wskazanie powierzchni "kontaktujących" (na których leżą węzły mogące wchodzić w kontakt) i tych będących celem kontaktu (na których leżą krawędzie elementów mogące wejść w kontakt),
- 4) zdefiniowanie powierzchni celu (Target),
- 5) Zdefiniowanie powierzchni wchodzącej w kontakt (Contact),
- 6) ustawienie w razie potrzeby opcji elementu kontaktu i stałych typu real (Real Constants),
- 7) wprowadzenie właściwych warunków brzegowych,

- 8) zdefiniowanie opcji rozwiązania i kroków obciążenia,
- 9) rozwiązanie zadania,
- 10) przejrzenie wyników.

6.12.2. Rozwiązywane zagadnienie

Rozwiązać zadanie ściskania stalowej rolki walcowej pomiędzy dwoma stalowymi okładzinami. Dane:

 $R=10mm, h=20mm, b=80mm, E=2.10^{5} MPa, v=0.3, p^{*}=10MPa$

Zagadnienie to można sprowadzić do typowego zadania sprężystego kontaktu między walcem a sprężystą półprzestrzenią. W przekroju poprzecznym układ pracuje w płaskim stanie odkształcenia (PSO). Według wzorów Hertza [4] dla tego przypadku mamy (rys. 4.12.5):

Rys. 6.12.5. Rozwiązanie zadania Hertza odpowiadające warunkom zadania

Dla danych przyjętych w zadaniu (R=10mm, $P=p^* \cdot b=800 \text{ N/mm}$, $E_1=E_2=2\cdot 10^5 \text{ N/mm}^2$, v = 0,3) wzory z rys. 6.12.4 prowadzą do następujących wyników:

 $E^*=1,099 \cdot 10^5 \text{ N/mm}^2$, a = 0,3044 mm, $p_0=1673 \text{ N/mm}^2$, z = 0,2374 mm, $\tau_{max} = 502 \text{ N/mm}^2$ Uzyskane numerycznie wyniki przedstawiono na kolejnych rysunkach (rys. 6.12.6, 6.12.7, 6.12.8) w postaci map naprężeń i wykresów.

Rys. 6.12.6. Rozkłady naprężeń w strefie kontaktu: a) naprężeń zredukowanych wg hipotezy Hubera-Misesa, b) normalnych w kierunku pionowym

Rys. 6.12.8. Rozkład naprężeń zredukowanych w strefie kontaktu: a) wzdłuż ścieżki CD, b) w okładzinie ze wskazaniem ścieżki CD

6.12.3. Typowy przebieg analizy numerycznej

6.12.3.1. Preprocessor

A. Zdefiniowanie płaskiego modelu geometrycznego 1/4 przekroju poprzecznego (wykorzystujemy podwójną symetrię modelu)

Ważne jest, aby dwa obszary odpowiadające fragmentowi walca i okładziny nie zostały omyłkowo zszyte (nie mogą mieć wspólnych węzłów).

- B. Określenie własności mechanicznych
- C. Wybranie elementu typu solid i wskazanie opcji płaskiego stanu odkształcenia (Plane strain)
- D. Podział na elementy skończone

Należy zapewnić odpowiednią gęstość dyskretyzacji w strefie kontaktu (rys. 6.12.8). Dobrze jest, aby podział części, która będzie wchodziła w kontakt (*Contactor –* zwykle jest to część bardziej wypukła), był bardziej gęsty niż podział części będącej celem kontaktu (*Target*).

Rys.6.12.9. Model solid i siatka elementów w zadaniu kontaktu walca z okładzinami

E. Generowanie elementów kontaktu

Wykorzystamy do tego specjalne narzędzie pozwalające na pełną automatyzację budowy strefy kontaktu – tzw. *Contact Wizard* (rys. 6.12.10).

Rys. 6.12.10. Generacja elementów kontaktu za pomocą panelu Contact Wizard

Należy zaznaczyć, że program sam ustala parametry kontaktu, jednak czasem mogą się one okazać nieodpowiednie. W celu kontroli i ewentualnej modyfikacji parametrów takich jak sztywność elementów kontaktu czy tolerancja poziomu penetracji należy otworzyć okno *Optional settings* (rys. 6.12.11). Zbyt mała sztywność kontaktu ("za miękko") lub zbyt duża wartość tolerancji penetracji prowadzą do lepszej zbieżności, jednak uzyskane wyniki mogą znacznie odbiegać od rzeczywistych (za duże strefy kontaktu i za małe wartości nacisków). Przyjęcie zbyt dużych sztywności kontaktu lub zbyt małych tolerancji na penetrację może doprowadzić do poważnych problemów ze zbieżnością.

Contact Wizard		_ _ X	
Ti	he contact pair is now ready to be created using the ollowing settings:	Contact Properver	
	Duly Structural DOF has been detected □ Create symmetric pair	Normal Penalty Stiffness	1.0 © factor © constant
_	☑ Include initial penetration Eriction:	Penetration tolerance Pinball region	0.1 · · · · · · · · · · · · · · · · · · ·
	Material ID 1	Contact stiffness update Contact algorithm	Each iteration (PAIR ID based) • Augmented Lagrange method
1	Coefficient of Friction	Contact Detection Behavior of contact surface	On Gauss points - Standard -
E	Electric Contact Conductance	Type of constraint	Auto assembly detection
	Optional settings		
	< Back Create > Cancel	<u>t</u> elp	<u>O</u> K C <u>a</u> ncel <u>H</u> elp

Rys. 6.12.11. Ustalanie parametrów kontaktu w oknie Contact Properties

6.12.3.2. Solution

A. Wprowadzenie warunków brzegowych

B. Ustawienie opcji rozwiązania - Solution Options

Można zdać się na automatyczne sterowanie obciążeniem przez program lub świadomie sterować sposobem obciążenia, pamiętając o łagodnym jego wprowadzaniu w pierwszej fazie procesu (rys. 6.12.12).

Rys. 6.12.12. Określenie warunków brzegowych i ustalenie parametrów rozwiązania

C Obliczenia

6.12.3.3. General postprocessor

Na tym etapie należy dokonać prezentacji wyników w postaci map naprężeń i wykresów. Przykładowe wyniki przedstawiono na rys. 6.12.6, 6.12.7, 6.12.8.

6.12.4. Interpretacja wyników. Zadania do wykonania

- Przeprowadzić analizę modelu dwuwymiarowego dla dwóch różnych gęstości siatki w strefie kontaktu, stosując ośmiowęzłowe elementy PLANE183 (uwaga: należy pamiętać o generowaniu elementów strefy kontaktu od nowa w każdym przypadku). W każdym przypadku wyznaczyć naciski na powierzchni kontaktu i określić szerokość strefy kontaktu. Zlokalizować położenie punktu Bielajewa.
- 2. Przeprowadzić podobną analizę stosując czterowęzłowe elementy PLANE182.

- 3. Rozwiązać zadanie dla różnych materiałów: walec stalowy ($E_1=2.10^5 MPa$, $v_1=0,3$), okładziny duralowe ($E_2=7.10^4 MPa$, $v_2=0,32$).
- 4. Wykonać zadanie z zastosowaniem opcji osiowej symetrii (*Axial symmetry*) co odpowiada zadaniu ściskania kulki pomiędzy dwoma kołowymi płytami. Wyniki porównać z analogicznymi formułami Hertza dla zadania wciskania kulki w sprężystą półprzestrzeń.
- 5. Zadanie w wersji podstawowej zmodyfikować przez przyjęcie sprężysto-plastycznego modelu materiału. Założyć, że rolka jest stalowa i zachowuje się sprężyście, a okładziny są wykonane ze stali o granicy plastyczności Re=300MPa (bez umocnienia). Prześledzić stan naprężenia i rozwój strefy plastycznej w okładzinie przyjmując, że obciążenie *p** zmienia się stopniowo od 0 do 15 MPa. Przedstawić wyniki dla pośrednich podkroków obciążenia (np. 5, 10, 15 MPa).
- 6. Do zadania w wersji podstawowej wprowadzić tarcie (przyjąć przypadki $\mu = 0,15, \mu=0,30$). Jak tarcie zmieniło wyniki zadania?